Money, Banking, and Financial Markets (ECON3350)

Tutorial 4. Taylor Series, Logarithmic and Exponential Function

Solve all questions. Questions with an asterisk (*) will be marked.

Taylor Series Approximation

A k-times differentiable function can be approximated by a Taylor series:

$$
f(x) \approx f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{\prime \prime \prime}(a)}{k!}(x-a)^{k}
$$

Here, $f(a)$ is the function value at $x=a, f^{\prime}(a)$ is the rate of change at $x=a$, etc..

Question 1*

a) Determine the function value and the first and second derivative of $f(x)=x^{4}$ at $x=3$. Then, estimate the function value at $x=3.1$, using a first-order and second-order Taylor series approximation. How big is the error? Illustrate with a graph.
b) Determine the function value and the first and second derivative of $f(x)=e^{x}$ at $x=0$. Then, estimate the function value at $x=0.1$, using a first-order and second-order Taylor series approximation. How big is the error? Illustrate with a graph.

Question 2

Show that the change in the logarithm of a variable is approximately equal to a percentage change.
Hint: Use a first-order Taylor approximation of the logarithmic function.

Question 3

Show that $\ln (1+R) \approx R$ for small R.
Hint: Use a first-order Taylor approximation around $R=1$.
(This approximation is often used in financial economics. For an interest rate of 3%, the logarithm of the gross return $(1+R)$ is approximately equal to $R: \ln (1+0.03) \approx 0.03$.)

Question 4*

Show that the time derivative of the logarithm of a variable equals its growth rate measured in percent. Use the following notation for a time derivative: $d X / d t \equiv \dot{X}$.

Question 5

Use the fact that the time derivative of the logarithm of a variable equals its growth rate to show that
a) The growth rate of the product of two variables, $X(t) Y(t)$, equals the sum of their growth rates.
b) The growth rate of the ratio of two variables, $X(t) / Y(t)$, equals the difference of their growth rates.
c) If $Z(t)=X(t)^{\alpha}$, then $\dot{Z}(t) / Z(t)=\alpha \dot{X}(t) / X(t)$.

Question 6*

a) The exponential function e^{x} is the inverse of the logarithmic function $\ln x$. Illustrate with a graph.
b) Does every function have an inverse?

